Imperial College London

Probing the far infrared in support of ESA's Far infrared Outgoing Radiation Understanding and Monitoring (FORUM) mission

Helen Brindley

Space and Atmospheric Physics and National Centre for Earth Observation

What is FORUM?

- Earth Explorer (EE)
 missions: science and
 research element of ESA's
 Living Planet Programme
- Focus on atmosphere, biosphere, hydrosphere, cryosphere and Earth's interior
- Increasing emphasis on the Earth system as a whole and anthropogenic impact on natural Earth processes
- Core or Opportunity class
- EE5 (AEOLUS) launched
 22nd August: providing first
 data

What is FORUM?

- EE9 13 proposals (June 2017)
- Down-selected to 2 (Nov. 2017) for 'two-year' Phase A study
- SKIM (Sea-surface Kinematics Multiscale monitoring)
- FORUM (Far infrared Outgoing Radiation and Monitoring)

What is FORUM?

- EE9 13 proposals (June 2017)
- Down-selected to 2 (Nov. 2017) for 'two-year' Phase A study
- SKIM (Sea-surface Kinematics Multiscale monitoring)
- FORUM (Far infrared Outgoing Radiation and Monitoring)

Goal: First ever measurement of entire (far)-infrared spectrum from space, with high radiometric accuracy

Simulated clear-sky OLR for sub-Arctic winter and associated cooling rates (Brindley and Harries, 1998, Harries *et al.*, 2008)

Simulated fraction of all-sky OLR within the far infrared (after Mlynczak and Collins, 2001)

But we can measure broadband OLR so why do we care?

(I) Model evaluation: diagnosis of gross biases and compensation effects; processes

Simulated clear-sky OLR (left column) and difference with AIRS estimates (right column) for different spectral bands. (Brindley and Bangtes, 2016, adapted from Huang et al., 2008)

- (II) Improved retrievals of key geophysical parameters for climate sensitivity
- (A) Upper tropospheric/Lower stratospheric water vapour

In agreement with Merrelli and Turner (2012)

Improved retrievals also feasible above cloud top height (e.g. in the presence of anvil cirrus, Feng and Huang, 2018)

- (II) Improved retrievals of key geophysical parameters for climate sensitivity
- (B) High-latitude surface emissivity

(a) Dec-Feb multi-model temperature biases relative to ERA-I from 1986-2005 (Flato et al., IPCC, 2013) (b) Observed September sea-ice extent from 1952-2010 (black) and from 1900-2100 under BaU scenario (CMIP3 models – blue) and RCP 4.5 scenario (CMIP5 models – red). (from Stroeve et al., 2012)

- Implementing estimates of spectral snow/ice surface emissivity reduces temperature bias in CESM (Kuo et al., 2018)
- Role of emitted far infra-red radiation seems important in determining future Arctic change (Feldman et al., 2014 but see also Huang et al., 2018)
- Caveat: All studies use <u>theoretical</u> FIR surface emissivities

CIRCCREX/COSMICS Campaign

- NERC CIRrus Coupled Cloud-Radiation Experiment / Cold-air Outbreak and Sub-Millimetre Ice Cloud Study
- Using the Faculty for Atmospheric Airborne Measurements (FAAM)
- Focus on flight B898 (19th March 2015). Low level run (300 m agl) already successfully exploited (Bellisario *et al.*, 2017)
- Can high level runs in the UTLS provide similar information given the longer atmospheric path length?

B898 Flight Track and atmospheric conditions

Typically low water content, clear-sky. Temperature profile is relatively constant with space/time.

Estimating surface temperature

- Makes use of Mid-IR radiances from the Airborne Research Interferometer Evaluation System (ARIES)
- Iteratively solves RTE in two micro-windows from 930-960 and 960-990 cm⁻¹ and finds T_s which minimises spectral variation in ε_s (e.g. Knuteson et al., 2004)
- Combines values from both windows and variability within scan to assess uncertainty in T_s retrieval

Final Retrievals

- Cycle 10: closest in time and location to the low level measurements.
- Cycles nearer the coast show spectrally flatter behaviour in the FIR, with higher emissivities across the infrared as a whole. To first order the behaviour is consistent with a reduction in snow grain size as one moves towards the interior of the plateau.

- (II) Improved retrievals of key geophysical parameters for climate sensitivity
- (C) Cirrus (and mixed phase) cloud

- (II) Improved retrievals of key geophysical parameters for climate sensitivity
- (C) Cirrus (and mixed phase) cloud

- (II) Improved retrievals of key geophysical parameters for climate sensitivity
- (C) Cirrus (and mixed phase) cloud

FORUM payload

FORUM Fourier Transform Spectrometer (FSI) and FORUM Embedded Imager (FEI)

FSI (FORUM Sounding Instrument)
Builds on heritage of REFIR-PAD (Carli et al, 1999) – acquiring data autonomously in
Antarctica since 2011 (Palchetti *et al.*, 2013)
from 100-1400 cm⁻¹ at 0.5 cm⁻¹ resolution

FEI (FORUM Embedded Imager)
Narrow-band imager for cloud detection

Instrument specifications (TBC)

FSI

Parameter	Requirement
Spectral range	100-1600 cm ⁻¹
Spectral resolution	<0.36 cm ⁻¹
Ground pixel diameter	12 km
Along track sampling	<70 km
Radiometric absolute accuracy	0.1 K (300-1600 cm ⁻¹) 0.2 K (100-300 cm ⁻¹) (190-300 K)
NESR (100-200 cm ⁻¹)	1 mW m ⁻² sr ⁻¹ cm ⁻¹
NESR (200-800 cm ⁻¹)	0.4 mW m ⁻² sr ⁻¹ cm ⁻¹
NESR (800-1600 cm ⁻¹)	1 mW m ⁻² sr ⁻¹ cm ⁻¹

FEI

Parameter	Requirement			
Channel central λ (width)	11.5 μm (2 μm)			
Measurement freq	<5/FSI dwell time			
Spatial res (1 pixel)	0.6 km			
Footprint size	60 x 60 pixels			
Co-registration with FTS	<0.3 km			
Noise	<0.5 K at 230 K			

Mission Lifetime: 4 years

Proposed orbital configuration

Schedule

Overall Programme Logistics

- E2E simulator being built
- Planned ground and flight campaigns autumn 2018/spring 2019
- Down selection to 1 mission scheduled for summer/autumn 2019
- Nominal launch date: 2025

Interested in getting involved?

1st FORUM Workshop, Florence 23-25th October see: http://fts.fi.ino.it/forum/workshop/

- Abstract submission open to 17th September
- Registration open to 5^h October

Any Questions?

INO-CNR
NATIONAL
INSTITUTE OF
OPTICS

National and Kapodistrian UNIVERSITY OF ATHENS

Imperial College London

Imperial College London Retrieval Method

$$L \downarrow aircraft \uparrow \uparrow = \varepsilon \downarrow s \ B(T \downarrow s \) \tau + L \uparrow \uparrow \uparrow + (1 - \varepsilon \downarrow s \) (L \downarrow aircraft \uparrow \downarrow \tau \uparrow 2 + L \uparrow \downarrow \tau)$$

$$Measured nadir radiance Surface emission transmitted to plane Downward atmospheric emission reflected by surface and transmitted back to plane of atmospheric layer below plane$$

Neglecting negligible terms and considering Lambertian surface reflectance:

$$\varepsilon \downarrow \nu = L \downarrow \nu \downarrow aircraft \uparrow \uparrow \uparrow - \tau \downarrow \nu L \downarrow \nu, eff \uparrow \downarrow - L \downarrow \nu \uparrow \uparrow \uparrow \downarrow \nu (B \downarrow \nu (T \downarrow s) - L \downarrow \nu, eff \uparrow \uparrow \downarrow)$$
 (1)

Main challenges are:

- Accounting for atmospheric absorption and re-emission (retrievals only attempted when t > 50 %)
- Estimating surface temperature

Imperial College London

Uncertainty Analysis

Typical combined uncertainties are of the order 0.035 (TAFTS) and 0.015 (ARIES)

Imperial College London

Run	Time (UTC)	Mean altitude	Effective Radius	
		(m)	(μm)	
1	11:49:31-12:00:06	8336	38 ± 10	
2	12:03:12-12:19:50	8018	25 ± 6	
3	12:22:49-12:31:21	7708	22 ± 6	

Scattering database	Effective radius, r _e , (μm)			Cloud optical thickness τ ₃₅₅		
	А	В	С	A	В	С
GHM	22	27	33	6.0	5.1	4.4
ASC	16	22	26	6.2	5.2	4.4
sc	21	28	27	5.6	4.8	4.1